منابع مشابه
ϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES
The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...
متن کاملComputing the Additive Structure of Indecomposable Modules over Dedekind-like Rings Using Gröbner Bases
We introduce a general constructive method to find a p-basis (and the Ulm invariants) of a finite Abelian p-group M . This algorithm is based on Gröbner bases theory. We apply this method to determine the additive structure of indecomposable modules over the following Dedeking-like rings: ZCp, where Cp is the cyclic group of order a prime p, and the p−pullback {Z→ Zp ← Z} of Z⊕ Z.
متن کاملModules with Dedekind Finite Endomorphism Rings
This article is a survey of modules whose endomorphism rings are Dedekind finite, Hopfian or co-Hopfian. We summarise the properties of such modules and present unified proofs of known results and generalisations to new structure theorems. MSC 2010. 16S50, 16D80.
متن کاملGröbner Basis and Indecomposable Modules over a like Dedekind Ring
Using Gröbner Basis, we introduce a general algorithm to determine the additive structure of a module, when we know about it using indirect information about its structure. We apply the algorithm to determine the additive structure of indecomposable modules over ZCp, where Cp is the cyclic group of order a prime number p, and the p−pullback {Z→ Zp ← Z} of Z⊕Z.
متن کاملProjective Modules over Dedekind Domains
In these notes we will first define projective modules and prove some standard properties of those modules. Then we will classify finitely generated projective modules over Dedekind domains Remark 0.1. All rings will be commutative with 1. 1. Projective modules Definition 1.1. Let R be a ring and let M be an R-module. Then M is called projective if for all surjections p : N → N ′ and a map f : ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1985
ISSN: 0021-8693
DOI: 10.1016/0021-8693(85)90176-0